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1.   Introduction 

Stereo vision or stereopsis is a scheme for depth perception that permits depth or distance 
information of a scene to be determined from two or more images of the scene talcen from 
different viewpoints. When incorporated as a component of the sensor suite on autonomous or 
unmanned ground vehicles (UGV) in a military application, this methodology offers the potential 
to provide information related to vehicle navigation, reconnaissance, surveillance, and target 
identification. However, the density and accuracy of the information obtained depend from a 
computational standpoint on the fidelity of the solution to the stereo correspondence and 

reconstruction problems.   A flow diagram of the stereopsis paradigm illustrating the 
relationship of the correspondence and reconstruction problems together with required input is 
provided in Figure 1. In order to render the correspondence problem more tractable, generally 
the left and right images are rectified so that corresponding image points are situated on the same 
horizontal scan line, reducing the search space for potential matches from two dimensional (2-D) 
to one dimensional. At a minimum, the rectification procedure requires knowledge of the 
external (extrinsic) camera parameters, which are defined as the rotation matrix and translation 
vector from one camera's coordinate system or reference frame to the reference frame of the 
second camera. In addition to the external camera parameters, imambiguous (absolute three- 
dimensional [3-D] coordinates, no scale factor or projective fransformation required) solutions of 

2 
the reconstruction problem require knowledge of the intrinsic parameters for both cameras. 
Thus, the quality of the information obtained from stereopsis depends on the accuracy of the 
estimates for the extrinsic and intrinsic camera parameters. 

Obtaining the extrinsic and intrinsic camera parameters is termed "camera calibration". The 
classical approach to camera calibration is to analyze the stereo images of a surveyed calibration 
pattern in different poses. A substantial amount of work has been performed in this area, and the 
reader is referred to Faugeras (1993), Xu and Zhang (1996), Trucco and Verri (1998), Gennery 
(2001), or Oberle and Haas (2002) and the references therein for a detailed explanation of this 
calibration process. However, if the stereo vision system is being used on a moving platform 
such as a UGV traversing off-road terrain, the camera parameters will probably begin to deviate 
from those calculated during the initial calibration procedure. Therefore, to maintain the 
accuracy of the stereopsis information, the stereo system should be re-calibrated on a regular 

''The correspondence problem: Which parts of the left and right images are projections of the same scene element? 
The reconstruction problem: Given a number of corresponding parts of the left and right images, and possibly 
information on the geometry of the stereo system, what can we cay about the 3-D location and structure of observed 
objects?" (Trucco & Verri 1998, p. 140). 

The intrinsic parameters for each camera are the ratios of the focal length to the horizontal and vertical pixel length, 
the coordinates of the principal point of the camera, and the angle between retinal axes. For most camera this angle 
is 90 degrees (Zhang, Deriche, Faugeras, & Luong 1994). 



schedule. However, such re-calibrations with the classical calibration approach may not be 
feasible, e.g., during operations in which the stereo system is required to operate for long periods 
of time without "hands-on" maintenance. Yet, even in these cases, re-calibration is still possible 

if certain conditions are met. 
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Pair 

Rectification 
to 

Align Image 
Scan Lines 

Feature/Point 
Matching 

(Correlation) 

3-D Scene 
Reconstruction 

Correspondence Problem Reconstru :tion Problem 

Intrinsic & Extrinsic 
Camera Parameters 
(Calibration information) 

Figure 1. Stereopsis paradigm flow diagram. 

A re-calibration of the extrinsic camera parameters is possible if all the following conditions are 

satisfied: 

1. The intrinsic parameters of both cameras are known. 

2. At least eight corresponding point matches between the left and right images are 

identified. 

3. The distance between two distinct points in the scene is known. 

Furthermore, if the intrinsic parameters for both cameras are assumed equal, then both the 

extrinsic and intrinsic camera parameters can be re-calibrated (Torr 2002). For this work, it is 
assumed that changes in the intrinsic camera parameters from the original calibration (obtained 

This is often referred to as self-calibration. 



with the classical approach) are sufficiently small. Thus, the intrinsic camera parameters are 
4 

assumed to be known. 

The objectives of this report are twofold. First, to present an algorithm for stereo system camera 
re-calibration, assuming the intrinsic camera parameters are known, which could be incorporated 
on a UGV or other platform. The second objective is to assess the impact that uncertainty in the 
pixel location (of the corresponding point matches between the left and right images) has on the 
algorithm's results. This objective is motivated by the fact that whatever technique (e.g., comer 
matching) is used to determine the required corresponding point matches is subject to pixel 
location errors. Besides pixel location error, false matches or outliers may also be present. To 
compensate for this type of matching error, a robust technique in computing the fundamental 
matrix, which contains the extrinsic parameter information, is used. The organization of the 
remainder of this report is as follows. In Section 2, the proposed algorithm is presented and 
discussed. Implementation details concerning the calculation of the fundamental matrix are 
provided in Section 3, Section 4 contams the analysis that assesses pixel location error. Finally, 
a summary of this work is provided in Section 5. 

2.   Proposed Re-construction Algorithm 

The re-construction algorithm now presented is drawn from ideas and approaches contained in 
the work by Trucco and Verri (1998), Torr (2002), and Loy (2002). A flow diagram for the 
algorithm is provided in Figure 2. 

As shown in Figure 2, the algorithm consists of five major steps: 

Step 1: Obtain a set of at least eight corresponding image points. Input is the stereo 
image pair. 

Step 2: Estimate the fundamental matrix via the set of correspondmg image points 
determined in Step 1. 

Step 3: Compute the essential matrix from the fundamental matrix of Step 2 under the 
^sumption that the intrinsic parameters of the cameras are known. Use singular value 
decomposition to modify the essential matrix to enforce the rank = 2 and equal singular values 
constraint. 

Step 4: Determine candidate rotations and translations consistent with the modified 
essential matrix of Step 3. Use back projection of a single image point to determine the 
appropriate rotation-translation pair. This translation is estimated modulo a scale factor. 

4 
If in practice this assumption proves to be inaccurate, tlie approach to re-calibration discussed in subsequent 

sections will have to be modified. 



step 5: Eliminate the unknown scale factor, based on the distance between two points in 

the scene. 
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Figure 2. Flow diagram for re-calibration algorithm. 



Step 1 is essentially the stereo correspondence problem without any of the constraints associated 
with structure models (e.g., epipolar geometry) since the extrinsic parametere of the stereo 
camera pair are not known. Two common approaches to address the correspondence problem 
are intensity-based matching and feature-based matching. To be efficient, intensity-based 
matching reqmres the images to be rectified. This is not possible when the extrinsic camera 
parameters are unknown as in this situation. Thus, for the algorithm, a feature-based matching 
approach is recommended. Comers are chosen as the feature to match because of their 
robustness relative to changes in perspective, ease of detection, and low computational cost to 
identify compared to other possible features. Also, the narrow b^eline of stereo systems 
mounted on UGVs should mitigate difficulties with occlusion associated with comer detection. 
Other possible features that could be used include edges, line segments, curve segments, closed 
curves or regions. Although all the possible choices for the feature offer advantages and 
disadvantages, it is felt that selecting comers as the feature provides the best compromise among 
the competing features. If the use of comers as the matching feature proves to be inadequate, 
then edges are recommended as an additional feature to be incorporated. Finally, based on a 
literature review, the Harris comer detector (Harris & Stephens, 1988) appears to be a robust and 
widely used comer detector. For example, Torr (2002) incorporates this comer detector in his 
stmcture and motion toolkit. 

Once a list of features from each image is compiled, the problem of matching the corresponding 
features (feature-based matching) in each image must be addressed. Unfortimately, the matching 
procedure is an ill-posed problem in the sense that there is no match for some features (e.g., 
because of occlusion); others may be matched with several corresponding features, while still 
others will be mismatched. In addition, even correctly matched points may suffer from pixel 
location error because of measurement inaccuracies. Clearly, features for which no match is 
achieved will not be included in a list of matched features. The difficulty of multiple matches 
can be avoided by the inclusion of only the best match (based on whatever matching criteria are 
being used). Thus, there are two sources of error in the matched features: mismatched features 
and correctly matched features with incorrect pixel locations. Mismatched features and correctly 

5 6 
matched features with "large" pixel location errors are termed "outliers" . Unfortunately, the 
severity/number of the outliers affects the accuracy of the fimdamental matrix calculation. 
Smith, Sinclair, CipoUa, and Wood (1998) demonstrated that the use of sub-pixel correlation 
windows together with the sum of squared differences (in place of cross correlation) as the 

5 
The magnitude of large and small when we are referring to pixel location error is determined by the user. It is 

controlled by the selection of a number of values used in the calculations, e.g., correlation window size and 
threshold value. 
6 
This is somewhat a misuse of the term outlier. Generally, a data point, even a correctly identified/measure point, is 

identified as an outlier if it does not satisiy a criterion associated with the mathematical model being used to 
describe the data. In this case, all matched points satisfy the mathematical model associated with the matching. It is 
the fact that these points should not be consistent with the mathematical model used to estim^e the fundamental 
matrix that results in their being labeled outliers. 



measure of similarity significantly reduces the percent of outliers by as much as 50%. It is 
recommended that their approach be incorporated in the matching process. The impact of 
correctly matched features with "small" pixel location errors or noise is addressed in Section 4. 

In Step 2, the fundamental matrix for the stereo system is determined with the corresponding 
matches from Step 1. Although many methods are available to estimate the fimdamental matrix 
(Zhang, 1996; Torr, 2002), the possibility of a large number of outUers resulting from the 
matching process dictates that a method that eliminates or adequately accounts for the outliers be 
incorporated into the procedure. Such methods are termed "robust estimators". As discussed in 
Lacey, Pinitkam, and Thacker (2000) and Torr (2002), the RANdom SAmple Consensus 
(RANSAC) paradigm is an example of an effective robust algorithm for the stereopsis 
application of interest. Torr (2002, p 46) uses a modification of the basic RANSAC algorithm, 
MAPSAC (Maximum A Posteriori SAmple Consensus) that he claims "yields a modest to hefty 
benefit to all robust estimations with absolutely no additional computational burden". The use of 
the MAPSAC algorithm is recommended for use in the computation of the fundamental matrix. 
Theoretically, this should provide an accurate estimation for the fundamental matrix. However, 
in practice, this does not appear to be the case. The basic difficulty is that algorithms (seven 
point, eight point, least squared, iterative, etc.) for estimating the fundamental matrix (one of 
which must be used in RANSAC/MAPSAC; Torr uses the seven-point algorithm) appear to be 
susceptible to nimierical instabilities associated with ill-conditioned matrix operations and/or 
local minima. Despite the pre-conditioning of the data (Hartley 1997; Trucco & Verri 1998; 
Torr 2002), calculations by the author using MAPSAC as implemented in Torr (2002) resulted in 
successive calculations with the same input data producing substantially different estimates for 
the fundamental matrix even with synthetic input data subject only to numerical noise associated 
with the numerical errors resulting from the computer calculations in generating the data. 

7 
MATLAB   (2001) is used for all calculations. 

To address this problem, an approach suggested by Torr (2002, p 14) is implemented: "...I 
suggest using a robust estimator like (sic) MAPSAC to get a first pass at F  and then perform a 
constrained nonlinear estimation afterwards to optimize..." Unfortunately, similar resuUs to the 
MAPSAC-only calculations (different estimates v^th the same input data) were obtained. 
However, running this calculation (i.e., MAPSAC followed by a second method) a fixed number 
of times with the same input data and selecting the resuh associated with the "minimal error" 
produces satisfactory results for the data sets tested. Details of the implementation and error 
metric used are discussed in Section 3. 

7 « 
MATLAB is a registered trademarlc of The Math Works. 

8 
r is the fundamental matrix. 

9 
Results are considered satisfactory if synthetic data are used: (1) the yaw, roll, and pitch angles for the computed 

rotation matrix are within 0.01 milliradian of the corresponding angles for the true rotation matrix, and (2) the angle 
between the computed and true translation vector is within 0.01 milliradian. 



Finally, it is noted that the assumptions used to construct the fundamental matrix are sufficient 
only to define the fundamental matrix modulo a scale factor (Xu & Zhang 1996). This is 
reflected in the translation vector of Step 4 also being defined modulo a scale factor. This 
completes Step 2. 

Step 3 consists of estimating the essential matrix. Although the procedure for obtaining the 
essential matrix fi-om the fundamental matrix is straightforward, it is not unique in the sense that 
the order of several of the matrix operations can be reversed. Thus, specific details of the 
recommended procedure are provided. 

First, the order of the transformation between the left and right camera coordinate systems is 
specified. Let p, =(X,,Y,,Z,) and p^=(X^,Y^,Z^) denote the 3-D coordinates of the same 

world point in the coordinate system of the left and right camera, respectively. For this work, 
the transformation between pi and pr is defined by 

p,=R(p,-T), (1) 

in which R represents the rotation matrix and T the translation vector between the left and right 
camera coordinate systems. Determining R and T is the goal of the re-calibration. 

Although the re-calibration process estimates the extrinsic parameters that define a 
transformation in 3-D space, input data are in terms of a 2-D coordinate system associated with 
the camera image with length in pixels. The relationship between this 2-D pixel coordinate 
system, several intermediate coordinate systems, and the 3-D coordinate system together with the 
necessary information required to transform between coordinate systems is shown in Figure 3. 
More specific details concerning the transformation between the various coordinate systems is 
provided throughout this section. 

In Step 2, a principal assumption (Torr 2002) for computing the fundamental matrix is that for 
any 3-D world point, if p^' is the image in homogeneous pixel coordinates in the left image and 
p^' is the corresponding point in the right image, then 

Pr''Fp,'=0. (2) 

F is the fundamental matrix. The standard embedding of Si^ into 2-D projective space is 
(x,y) h4 (x,y,l). However, Torr (2002) suggests using (x,y) h^ (x,y, C) with C chosen to obtain 

the best numerical conditioning. The effect of a different choice for f on the estimation of the 

fiindamental matrix is discussed in Section 3. The standard embedding is used in the derivation. 

Assuming that the transformation between 3-D points in the coordinate systems of the left and 
right cameras is given by Equation (1), then tiie essential matrix, 1, satisfies the equation (Xu & 
Zhang 1996; Trucco & Verri 1998) 

p/Ep,=0, (3) 
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10 
Here, p, and p, represent normalized image points   defined by 

p,=^andp,=|L. (4) 

Therefore, a relation between F and E can be established fi-om Equations (2) and (3) since the 
normalized image points and the homogeneous pixel coordinates for each camera are related by 
the camera calibration or intrinsic matrix denoted by K. An assumption for this work is that the 
calibration matrix has been determined for each of the cameras used in the stereo pair. The 
calibration matrix for a camera is defined (Xu & Zhang 1996) as 

K = 

^1 

0 

0 

-cot^       O, 

—sin^ 

0 

o., (5) 

10 
Normalized coordinates can be visualized as being unit distance from the optical center, i.e., the focal length is 1. 



in which f is the measured camera focal length, s^ the pixel length in the direction of the image 
scan lines, s^ the pixel length in the direction of the image scan columns, ( O^, Oy ) the principal 

point (intersection of the camera focal or optical axis with its image plane), and 0 the skew 

angle between the pixel axes  . With the definition of K in Equation (5), the relation (Xu & 
Zhang 1996) between normahzed image points and the homogeneous pixel coordinates for the 
left and right cameras is 

Pi'=K,p, andp/=K,p^. (6) 

If the expressions from Equation (6) are substituted into Equation (2) and combined with 
Equation (3), it can be concluded that 

E = K,^FK,. (7) 

Equation (7) provides the relation between the fundamental and essential matrix under the 
assumption that the cameras are calibrated, i.e., the camera intrinsic parametere are known. 

The rank of the essential matrix must equal 2 (Faugeras 1993; Xu & Zhang 1996; Trucco & 
Verri 1998) and therefore. Equation (7) unphes that the fundamental matrix must also have rank 
equal 2, Since the fundamental matrix is numerically estimated in Step 2, it is unlikely that the 

estimated fundamental matrix will have rank equal 2,    Thus, the essential matrix derived fi-om 
Equation (7) with the estimated fundamental matrix from Step 2 will generally not have rank 
equal 2 since both K^ and K, have full rank. However, if the extrinsic parameters (rotation 

matrix and translation vector) are to be determined in Step 4, the essential matrix must have rank 
equal 2. In fact, the two non-zero singular values must be equal (Faugeras 1993). These 
conditions are referred to as rank and singular values constraints. A heuristic approach to 
enforce these constraints and estimate a matrix "close" to the matrix E of Equation (7) is to use 
singular value decomposition (SVD). If the SVD of E is 

E = U 

0  0 

0  a 
(8) 

3/ 

define the modified essential matrix as 

11 

12 
The angle ^is normally very close to nil and is generally set equal to this value. 

Although the assumption that the determinate of the fundamental matrix equals zero is used in the calculations, 
generally the third singular value is small but not exactly zero because of numerical approximations. 



/ 

E'=U 

2 

0 

0 

\ 
0 

2 
0       0 

V^ (9) 

According to Wang and Tsui (2000), E' defined in this manner generates a matrix closest to E 
in the Frobenius norm satisfying the rank and singular value constraints. 

Once E' is computed, Step 4 is addressed. The following proposition (Faugeras 1993) is 

germane to the situation. 

Proposition: If a matrix, E', satisfies the rank and singular value constraints, 
then it can be factored as the product of a rotation matrix and a skew symmetric 
matrix containing information about the translation vector, E' = R *S. 

Specifically, if T = [t, t,] is the translation vector, then 

S = 

0 

0 
0 

(10) 

Since the orientation of the two cameras is unknown, the factorization of E' is not unique, and 
as mentioned earlier, the translation vector is known modulo a scale factor. The first part of Step 
4 determines possible factorizations of E' while the second part determines the factorization(s) 
consistent with the assumption that both cameras are pointed in the same direction with depths 
being positive (i.e., data points are in firont of the camera). Determination of the scale factor is 
discussed in Step 5. According to Wang and Tsui (2000), there are eight different factorizations 
of E', consisting of four possible rotation matrices and two possible unit translation vectors. If 

U = (u,,U2,U3) and V = (v,,V2,V3)   are the two orthogonal matrices fi-om the SVD of E' in 

Equation (9), then the eight factorizations are given by T = iVj and 

R, =(-U2,u,,U3)V'' 

R,=(-U2,u„-U3)V'' 

R3=(u2,-u„U3)V^ ■ 

R4=(u2'-u,rU3)V'' 

The second part of Step 4, namely, determining the appropriate R,, i = 1,2,3,4, and the sign of 

T consistent with the camera location assumption stated previously, is now addressed. 

(11) 

13 
Here, ui and vi, i = 1,2,3, represent the columns of the U and V matrices, respectively. 

10 



Essentially, the idea is to select a pair of matched image points, compute the sign of the depth or 
distance from the camera (left point in left camera coordinate system and right point in right 
camera coordinate system (i.e., Z, > 0 and Z^ > 0) for each of the eight combinations of R and 

T, and select those R and T resulting in both distances being positive. 

T is known modulo a scale factor. Therefore, assume that the true value of T is T = oT in 

which T = ±¥3. Without the loss of generality, it can be assumed that <» > 0. hi the following, 

R and T stand for one of the possible combinations of rotation matrix and translation vector. 
The objective is to express Z, and Z, in terms of the candidate R and T and other known 

quantities. In this c^e, that includes only the calibration matrices, K, and K^, and matched 
image points in homogeneous pixel coordinates expressed earlier as p,' and p/. 

Following the approach of Trucco and Verri (1998), let ^R, represent the ith row of the rotation 

matrix written as a column vector, then from Equation (1) 

Z,=,R3'^(p,-«f). (12) 

With this expression for Z^, Equation (4) can be rewritten as 

p,= =r^i ^. (13) 
,R3^(p,-fiir) 

Next, Equation (1) is used to eliminate p^ in Equation (13) to obtain 

p,=    '^'P'-^l   . (14) 

Letting p^ = (x^,yr,l), Equation (14) implies 

R.-(p,-.t) 
,R3^(p,-fflT) 

The next step is to introduce Z, by replacing p, with its equivalent expression from Equation (4) 

to obtain 

R/(Z,p,-^) 

,Rj(Z,p,-<i)T) 

Finally, we obtain an expression for Z, by solving Equation (16) for Z,. 

Z, =  .I'L'   '^  'T-   • (17) 
(xA-rR,fp 

Equation (17) is written in terms of normalized image coordinates (i.e., x^ and p,) instead of the 

known homogeneous pixel coordinates. Fortunately, Equation (6) provides a way to convert 

11 



and the sign of Z^ is 

between the two coordinate systems in terms of the known calibration matrices. In addition, 
since G> is by assumption positive the final expression for the sign of Z, is written as 

c ((B*(K/'p\)),R3-,R.ft (jg^ 

^'    ((B*(K/V,)XR3-,R,fK,-V,' 

In Equation (18), B is the row vector B = (1,0,0). 

An expression from which the sign of Z^ can be determined is given in Equation (12), i.e., 

Z^ =, R3^(p, - fi^T). What remains is to express p, in terms of known quantities. If the 

relations in Equations (4) and (6) are combined, p, = Z,K,"'p'i and from Equations (17) and (18) 
Z, =fi)*Sz_. Therefore, 

Z,=,R3^((«*S2,)K,-V,-fi*), (19) 

S,^=,R3\S,K,-V,-t). (20) 

Equations (18) and (20) can be used to select the appropriate rotation matrix and translation 
vector. 

Assuming that an appropriate rotation matrix and scaled translation vector are identified, Step 5 
consists of determining the scale factor. In order to compute the scale factor, the distance 
between two distinct points in the scene is required. For UGVs, Haas (2003) suggests the use of 
two specific locations on the vehicle body, which are easy to identify in an image. 

Suppose that a' and b' represent the homogeneous pixel coordinates of the two distinct points in 
either the left or right camera image (without the loss of generality, assume the left camera 
image). With the relationship in Equation (6), the pixel coordinates are expressed in normalized 
image coordinates by 

a = K,-Vandb = K,-V. (21) 

The normalized image coordinates are converted to 3-D coordinates in the coordinate system of 
the left camera with the relations expressed in Equations (4), (17), and (18). Thus, 

a = G)*Sz5 = «*SzK,"'a' and b = »*Szb = fl?*SzK,"V, (22) 

and, since the distance between a and b is known the scale factor, a can be determined with 
the distance formula between points in 3-D. If ||.,.|| represents the Euchdean distance between 

points, the scale factor is expressed as 

^_,1.,      Ml  ,   .. (23) 
K,"'a',K-'b' 
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The numerator to the right-hand side of Equation (23) is the known distance between the two 
locations. 

Tliis completes a description of the proposed algorithm. The next section discusses details 
involving the estimation of the fundamental matrix. 

3.   Implementation Details Associated With Estimating the Fundamental 
Matrix 

From the description of the proposed algorithm, its success clearly depends on the accuracy of 
the fundamental matrix estimation in Step 2. However, a number of questions related to the 
fundamental matrix estimation were left unanswered in Section 2. The specific questions 
addressed in this section are 

1. What error me^ure should be used in selecting the fimdamental matrix? 

2. What value for the third homogeneous pixel coordinate, g, should be used in the 
calculation of the fundamental matrix? 

These questions are Mdressed empirically with a set of synthetically generated image points 
based on a given pair of camera calibration matrices and known extrinsic parameters (i.e., 
rotation matrix and translation vector). To obtain the synthetic image points, 3-D points in the 
coordinate system of the left camera are randomly generated in the range of -10 < X, < 10, 
-6 < Y, < 6, and 1 < Z, < 25. The limits on the coordinates are chosen so that the pixel 

coordinates generally fall within a 640x480 grid, hnage points that do not fall within this grid 
are discarded. Distribution of the 500 randomly selected points is shown in Figure 4, indicating 
that they are fairly uniformly spread and do not provide a degenerative point set. The resulting 
lefl image pixel locations are shown in Figure 5 (similar results apply to the right image). Pixel 
coordinates are computed to sub-pixel accuracy compatible with the MATLAB calculations used 
to compute the values. Although the image points are not measured, it is still possible that the 
points contain errora or noise introduced through the calculations. Direct me^urement of the 
error is not possible. However, we can obtain a "sense" for the magnitude of the error in the 
points combined with the error associated with MATLAB matrix multiplication involving the 
fimdamental matrix by evaluating Equation (2) for the synthetic data points. The fundamental 
matrix is determined with the same camera calibration matrices, rotation matrix, and translation 
vector used in the calculation of the points. A histogram of the errors (difference from the true 
value of 0) obtained by evaluating the right-hand side of Equation (2) for each of the 500 
synthetic data points is shown in Figure 6. The average value for the error is 2.16595e-l 1 and 
the standard deviation is 1.2945e-10. These values are close to zero, but the possibility of error 
in the synthetic data points cannot be eliminated. For generating the synthetic data and the 
calculations, 
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T = 

0.34768 

-0.00637 

-0.00608 

.R = 

f 0.9996879 

0.0065039 

V-0.0241202 

K, 

/'869.314  0  354.554^ 

0  869.297 243.567 

0    0     \     j 

■0.006505 

0.999979 

0.000019 

0.024119  ^ 

0.000137 

0.999709 j 

,and K, = 

/'839.314       0       342.382"^ 

0      839.245   244.141 

0 0 1     y 

.(24) 

Synthetic 3-D Points: Coordinate Systenn Left Camera 

Y-Axis 6      -10 
X-Axis 

Figure 4. Distribution of synthetic 3-D points in left camera coordinate system. 
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Now the question of what error metric to use is addressed. Since the extrinsic parameters are of 
interest, ideally, an error metric based on these quantities should be used in the selection of the 
fundamental matrix. However, using a successive approximations approach for the extrinsic 
parameters causes the same result as the estimation of the fundamental matrix, namely, 
numerical instability and/or local minimum. Therefore, the error metric chosen is essentially 
based on the condition expressed in Equation (2), p/ Fp,'= 0. Torr (2002) recommends the use 
of a method adapted from Sampson (1982) and essentially, this is the error matrix recommended 
for the algorithm. The actual metric used is the sum of the absolute values of the Sampson error 
computed for each of the points in the data set. Thus, the metric is a single value referred to as 
the sum of absolute Sampson squared errors (SASSE). 

To investigate the effectiveness of the Sampson error metric as being a "good" indicator of the 
correct fundamental matrix (and thus, the extrinsic parameters). Steps 2 through 4 are coded in 
MATLAB. Functions fi-om Torr's (2002) structure and motion toolkit are used to perform the 
MAPSAC, Sampson error metric, and fundamental matrix optimization calculations (a 
constrained nonlinear estimation enforcing det(F)=0). Outliers are deleted from the matched 

14 . . 
points between the MAPSAC and optimization calculations.    One thousand iterations of Steps 
2 through 4 are performed. Each iteration starts with the synthetic data points obtained earUer, 
so there are 1,000 independent estimates of the extrinsic parameters. Since the true extrinsic 
parameters, given in Equation (24), are known for the synthetic data points, it is possible to 
compare Sampson's error metric for the fundamental matrix to error measurements between the 
true and estimated extrinsic parameters for each iteration. Four different error measurements 
between the estimated and true extrinsic parameters are used. 

If  R(axis, rad) represents the rotation matrix for a rotation about the indicated axis by rad 
radians, then the extrinsic parameter R can be expressed as 

R = R(z,a)*R(y,y^*R(x,r). (25) 

In Equation (25), a is the roll angle, p the yaw angle, and y the pitch angle. The three rotation 
matrices on the right-hand side of Equation (25) are given by 

'\ 0 0      ^ 

R(x,;')=    0 cos;^ -sin>' 
0 sin/ cos/ 

R(y,y») = 

'' cos p 
0 

v^ - sin p 

0 

0 

sin p^ 
0 

cos p 
and 

14 
No outliers are computed with the synthetic data, but this procedure is incorporated into the code for use with 

general data. 
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R(z,« ) = 

cos a 

sin a 

0 

- sm a 

cos a 

0 

0 

1 

(26) 

Substituting the expressions in Equations (26) into Equation (25) produces the following 
expression for the rotation matrix in terms of roll, yaw, and pitch angles: 

'cosacos^       cosasin^siny-sinacosf       cosasin^ffcosf+ sinasinf^ 

R = |sinacos;5       sincrsin^siny+ cosacosf       sinasin^cosf-cosasinf 

-sin^ cosyffsinf cos^cosf 

(27) 

Thus, given a rotation matrix. Equation (27) can be used to determine the roll, yaw, and pitch 
angles. The first three error measures are the difference in milliradians of the roll, yaw, and pitch 
angles between the estimated and true rotation matrices. The angle in milliradians between the 
estimated and true translation vectore is the fourth error me^ure. 

With the synthetic data points, a set of extrinsic parameters satisfying the geometric assumptions 
for the cameras (see Section 2) was determined for 689 of the 1,000 iterations. The minimum 
SASSE was 5.33E-6. For this iteration, the estimated extrinsic parameters are 

(28) 

SASSE values and the sometimes rather large deviations from the true extrinsic values are 
discussed next. A comparison of T^, and R^^, with the coiresponding values in Equation (24) 
shows excellent results for the rotation matrix. When we divide T^, component wise by the true 

translation vector in Equation (24), the vector. 

0.99967895 r 0.9996878 -0.006506 0.024122 

T = 
'■est -0.0183298 andR^,= 0.0065044 0.999979 0.000137 

-0.0174929 1-0.0241228 0.000020 0.999709 

'2.87528^ 

ratio = 12.87570 

2.87616^ 
(29) 

is obtained. Thus, to within 0.03% (largest percent difference for the entries of ratio), the 
estimated and true translation vectore are multiples of each other. As expected with such a close 
match, the four error measures are extremely close. The largest error is approximately 
0.006 milliradian, as shown in Table 1. 
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Table 1. Errors in milliradians for the estima- 
tion of extrinsic parameters with the 
use of synthetic data and no noise 

Error Metric Error 
(milliradians) 

Yaw 0.00259 
Roll 0.00047 
Pitch -0.000134 

Translation Vectors 0.00599 

Thus, it appears that SASSE is an effective criterion for selecting the fundamental matrix. This 
is supported by a regression analysis between SASSE and the sum of the absolute values of the 
four error metrics. Figure 7 shows the graph of the sum of the absolute values of the roll, yaw, 
and pitch angle errors, combined with the absolute value of the angle between the estimated and 
true translation vectors versus SASSE for the 689 estimations. The graph cleariy shows the wide 
range of SASSE values, ten orders of magnitude, and total angle error (five orders of magnitude 
resulting in erroneous estimations of the extrinsic parameters) obtained with the synthetic data. 
This demonstrates the necessity of performing a number of iterations and not just a single 
estimation for the fundamental matrix. The regression analysis indicates that SASSE is linearly 
related to the absolute angle error sum at a confidence level exceeding 99.98%. Thus, it is 
recommended that the SASSE error metric be used in the selection of the fundamental matrix. 

The other implementation question concerned the value to use for the third homogeneous pixel 
coordinate, g, required as input to the Torr (2002) routines for computing the fundamental 
matrix. In the previous calculations, g is set equal to 1. However, Torr (2002) recommends 
using a value for g that provides the best nimierical conditioning for his algorithms. 
Specifically, Torr (2002) suggests that g be set equal to the estimate of the focal length in pixel 
units, or if no estimate is available, let g = 256 so that g is of the same order of magnitude as the 
image coordinates. Referring to the camera calibration matrices in Equation (24), the estimated 
camera focal lengths in pixel units are approximately 869 and 839—an average of 854. To 
investigate the effect of using a different value for g, the synthetic data calculation fi-om before 
is re-run for g = 256 and g = 854. 

Results comparing the number of times the extiinsic parameters are successfully estimated (of 
1,000 attempts) and the minimum SASSE are provided in Table 2. The SASSE for g = 256 and 
g = 854 are shown in Figure 8. Note that the scales on the vertical axes of the two graphs in 
Figure 8 differ by an order of magnitude. 
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Figure 7. SASSE versus absolute angle error sum for the synthetic data calculations. 

Tahle 2. Results of calculations for different values of g 

? Successful Est. of 
Extrinsic Parameters 

Minimum SASSE 

1 689 5.33E-6 
256 1000 1.53E-12 
854 1000 2.88E-10 

From Table 2 and Figure 8, it appears that using the larger values of g results in more stable 

numerical calculations (extrinsic parameters estimated in 100% of the iterations versus 68.9% for 
$■ = 1) and much lower minimum and overall SASSE values. Unfortunately, a similar trend in 

the computed extrinsic parameters is not achieved, hi fact, the computed rotation matrices and 
translation vectors are in very poor agreement with the true values, as illustrated in Figures 9 and 
10. If one compares Figure 7 with Figures 8 and 9, there is a difference of five orders of 
magnitude in the minimum absolute angle error sum for f = 1 compared to f = 256 or $■ = 854. 
Based on these results, a value of §• = 1 is recommended for use in the algorithm. 
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Figure 10. SASSE versus absolute angle error sum, g = 854. 

4.   Impact of Pixel Location Error 

To address the impact of pixel location error on the results of the computed extrinsic parameters, 
normally distributed random noise with zero mean is added to the synthetic pixel data. The 
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extrinsic parameters are then computed as in Section 3 for this new set of data. When the 
variance of the normal distribution used to generate the noise is varied, data sets with different 

15 
average pixel error   are obtained. Results of the calculations are provided in Table 3. 

Interpreting the data in Table 3 is difficult since the impact of the error in the extrinsic 
parameters is meaningful only when the transformation represented by the extrinsic parameters is 
appUed to 3-D points to convert between camera coordinate systems or in image rectification. 
As expected, the sum of the errors tends to increase as the average pixel error increases, although 
it is not monotonic. In most cases, the translation vector error dominates the error representing 
more than 90% of the total error. 

Table 3. Errors in extrinsic parameters as a function of average pixel error 

Average 
Pixel 
Error 
(Pixel) 

Number 
Inliers 

(-) 
Yaw Error 

(milliradians) 
Roll Error 

(milliradians) 
Pitch Error 

(milliradians) 

Translation 
Vector Error 
(milliradians) 

Absolute 
Sum of 
Errors 

(milliradians) 

Percent 
Translation 

Error of 
Total 
Error 

0.30953 451 -0.30677 0.00075 -0.47925 21.63163 22.67923 95.4 
0.31442 445 -1.34523 -0.08148 0.46376 31.33827 33.22876 94.3 
0.61760 464 1.21886 0.11332 0.26589 95.01793 96.61600 98.3 
0.64231 443 -0.85345 -0.10906 1.19506 134.05170 136.20928 98.4 
0.92697 405 -3.04766 1.40773 -5.09897 305.87785 315.43222 97.0 
0.93086 440 -1.44756 -0.11436 -1.15306 35.89073 38.60571 93.0 
1.11433 397 -1.70679 -1.86785 5.63422 173.82988 183.03873 95.0 
1.13192 416 -0.83253 1.29143 -2.10948 319.57389 323.80732 98.7 
1.23519 375 313.27911 16.77453 7.76462 191.58728 529.40555 36.2 
1.28463 423 63.66804 3.85651 -1.59969 70.28832 139.41256 50.4 
1.54495 378 -13.43722 4.73581 -9.48231 343.52339 371.17874 92.5 
1.55144 378 -3.06847 -0.84015 4.04731 443.57720 451.53313 98.2 
1.87059 370 243.60268 201.13143 33.33670 183.08583 661.15663 27.7 
1.92376 325 -4.01233 -2.70836 5.41658 560.02219 572.15946 97.9 

These results are somewhat surprising since similar calculations with real data wherein the 
average pixel error exceeded several pixels generated results closer to the first two lines of 
Table 3. An analysis of the differences in the data sets showed that the data sets based on real 
data that provided good estimates for the extrinsic parameters consisted of matched points, most 
of which corresponded to 3-D points in one of several narrow depth bands in fi-ont of the 
cameras. This is in contrast to the synthetic data that are uniformly distributed in depth. 

To determine if restricting the depth of the 3-D data points used to generate the synthetic data 
improves the extrinsic parameter estimation, a synthetic data set similar to the one used 
previously is generated with the depths restricted to be in one of three bands:  3 < Z, < 5, 
8 < Z, < 10, or 13 < Z, < 15. The data set consists of a total of 501 points equally distributed 

15 
Average pixel error is defined as the average distance (Euclidean) in pixels between the original data point and the 

data point resulting from adding noise. The average is based on bofli the left and right images. Thus, the total 
number of distances averaged is 1,000. 
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among the three depth bands. Results of the extrinsic parameter estimation with the restricted 
data set with noise added are provided in Table 4. 

Table 4. Errors in extrinsic parameters as a function of average pixel error for restricted data points 

Average 
Pixel 
Error 
(Pixel) 

Number 
Inliers 

(-) 

Yaw Error 
(milliradians) 

Roll Error 
(milliradians) 

Pitch Error 
(milliradians) 

Translation 
Vector Error 
(milliradians) 

Absolute Sum 
of Errors 

(milliradians) 

Percent 
Translation 

Error of 
Total 
Error 

0.30920 478 -0.83248 -0.11850 0.71049 6.38768 8.04915 79.4% 
0.31650 478 0.74264 0.19661 0.37298 7.30080 8.61302 84.8% 
0.63644 438 1.75895 0.39503 0.06085 22.09261 24.30744 91.8% 
0.63702 464 -0.93796 0.10236 -1.67921 30.53573 33.25525 90.8% 
0.93900 439 -6.05905 -0.761574 1.18175 22.13129 30.76939 71.9% 
0.94186 457 -0.62016 -0.74964 0.96650 15.86392 18.20022 87.2% 
1.09381 410 -7.59709 -0.02254 7.56055 9.23383 24.41401 37.8% 
1.11380 418 0.47581 0.37349 -4.80996 75.71262 81.37187 93.0% 
1.22608 403 -5.84966 0.24586 5.68053 9.88465 21.66070 45.6% 
1.22854 416 -9.98535 -0.79442 2.29670 55.10920 68.18568 80.8% 
1.56880 377 1.08303 -2.87929 4.35595 154.57800 162.89629 94.9% 
1.59592 396 -7.18333 -0.24495 10.82215 53.83216 72.082581 74.7% 
1.87672 340 -20.7766 0.13016 5.52011 41.01993 67.44696 60.8% 
1.88366 335 -9.21176 -2.84629 5.98874 227.51472 245.56152 92.7% 

A comparison of Tables 3 and 4 indicates a substantial decrease in the translation vector error 
and a more stable estimate of the rotation matrix with the depth restricted data set. 

As mentioned before, interpreting the meaning of the errors in Tables 3 and 4 is difficult since the 
values are presented in isolation, hi an attempt to provide a context in which to interpret these 
errors, the following results are provided. The depth-restricted data set with different amounts of 
added noise is used to generate a number of estimates of the extrinsic parameters. Yaw, roll, pitch, 
and translation vector angle errors for two of the estimates representing extremes in the results are 
given in Table 5. The resulting rotation matrices and translation vectors are then used to perform 
3-D reconstruction on the set of 501 matched synthetic pixel points without noise. Three- 
dimensional reconstruction is performed with the approach discussed in Trucco and Verri (1998), 
as implemented in Oberie and Haas (2002). We eliminated the unit translation vector scale factor 
by multiplying the unit translation vector by the length of the translation vector in Equation (24) 
used in generating the synthetic data points. 

Table 5. Yaw, roll, pitch, and translation vector error 

Data Set Ysm Error 
(milliradians) 

Roll Error 
(milliradians) 

Pitch Error 
(milliradians) 

Translation 
Vector Error 
(milliradians) 

A -0.13419 -0.08010 -0.08168 9.95826 
B -11.74610 -1.23964 -0.51374 53.22925 
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RA = 

For data set A, 
^0.999692 -0.006473 0.023985 ^ 

0.006424    0.999979 0.000216 

^-0.023986 -0.000062 0.999712^ 

Corresponding values for data set B are 

^0.999910 -0.005272 0.012373^ 

and TA = 

f 0.347719 "i 

-0.006673 

-0.002632 

R. 0.005266    0.999986 0.000559 

-0.123762  -0.000494 0.999923; 

and TB = 

0.347484 

-0.007842 

0.012369 

(30) 

(31) 

The percentage difference in distance between the 3-D reconstructed points and the original 3-D 
synthetic points on a point-by-point basis is shown in Figure 11 for the reconstruction with R^ 
and T^. The average percent difference in distance for these data is 0.46%. However, the error 

appears to be clustered into three groups corresponding to the three different depth bands used in 
generating the synthetic data: points 1 through 167 for 3 < Z, < 5 with an average percent error of 
0.29%; points 168 through 334 for 8 < Z, < 10, average percent error of 0.44%; and points 335 
through 501 for 13 < Z, < 15 with an average percent error of 0.64%. Thus, not unexpectedly, the 
error worsens as depth increases. Results for Rg and Tg are given in Figure 12. 
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Figure 11. Percent difference in distance between 3-D reconstructed points with extrinsic 
parameters generated from data set a and synthetic 3-D points. 
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Figure 12. Percent difference in distance between 3-D reconstructed points with extrinsic 
parameters generated from data set b and synthetic 3-D points. 

For data set B, the average percent error has increased by two ordera of magnitude to 55.1%. 
The effect of depth on the error is even more evident than in Figure 11. Looking at Table 5, it is 
not clear whether the rotation or translation is responsible for the large increase in percent error 
compared to Figure 11. Although the translation vector error has a much larger magnitude 
increase (-10 milliradians to -53 milliradians), the yaw angle error increased by two orders of 
magnitude while the roll and pitch increased by roughly one order of magnitude, but the maxi- 
mum magnitude change in the yaw, roll, and pitch angle errors was less than 12 milliradians. To 
obtain information about the relative importance of the rotation versus the translation in the 3-D 
reconstruction, two additional 3-D reconstructions are performed: 

1. The rotation matrix of data set B is combined with the true translation vector from 
Equation (24). This calculation addresses the impact of error in the rotation. Results for the 
percent error in distance are shown in Figure 13. 

2, The true rotation matrix from Equation (24) is combined with the translation vector for 
data set B. This calculation addresses the impact of error in the translation. Results for the 
percentage error in distance are shown in Figure 14, 

Figures 12 and 13 are similar, indicating that the major source of the error in the 3-D recon- 
struction is attributable to errors in the rotation matrix. A point-by-point comparison between 
Figures 12 and 13 indicates that the franslation vector accotmted for only about 3.7% of the total 
error. This observation is further supported by Figure 14, Not only is the percent error reduced, 
compared to Figure 12, but no effects appear to be attributable to depth as in Figures 11 through 
13. 
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Figure 13. Percent difference in distance between 3-D Reconstructed points with rotation 
from data set b and true translation vector versus synthetic 3-D points. 
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Figure 14. Percent difference in distance between 3-D reconstructed points true rotation and 
translation vector from data set b versus synthetic 3-D points. 
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5.   Summary 

This report explores the potential for performing stereo camera re-calibration to address potential 
errors in the stereo camera pair's extrinsic parameter. The appUcation of interest is stereo 
cameras on a UGV, with the errors being introduced because of the UGV's travel over rough 
terrain. 

The algorithm for camera re-calibration presented in Section 2 addresses the two major 
difficulties associated with this problem, namely, left and right image corresponding point 
mismatches or outliers and the ill-conditioned fimdamental matrix numerical calculation. A 
RANSAC approach is used to address outliers while multiple iterations of the calculation to 
minimize the squared errors of the fimdamental matrix condition, p/^ Fp,'= 0, are employed to 

overcome the ill-conditioned nature of the calculation. As shown in Section 3, the algorithm 
appears to provide very good results for noise-fi-ee data. 

Unfortunately, as shown in Section 4 and well documented in the literature, error in the exact 
pixel location of corresponding image points can seriously degrade the estimation for the 
extrinsic parameters. Results fi-om Section 4 indicate that corresponding points should be found 
with sub-pixel accuracy of 0.5 pixel or less. Restricting corresponding point matches to narrow 
depth bands also appears to improve the results of the calculation. Finally, it is observed that for 
the reconstruction problem the major source of error in the 3-D reconstruction is attributable to 
errore in the rotation matrix with the magnitude of the 3-D reconstruction error highly dependent 
of the scene depth of the points being reconstructed. The error in the 3-D reconstruction 
attributable to errors in the ti-anslation vector appears to be independent of scene depth. 

hi summary, it appears that stereo camera re-calibration is possible. However, the accuracy of 
the re-calibration strongly depends on the ability to determine corresponding left and right image 
points to sub-pixel precision. Consequently, fiiture work should focus on improving the 
accuracy of the resuhs of the correspondence problem. 
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